Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The northeastern U.S. has experienced a rapid rise in extreme precipitation events and total precipitation due to climate change. Despite higher overall precipitation, long-term near-surface soil moisture at the Harvard Forest in Petersham, MA has decreased since 2010, a pattern also observed in other global temperate forest regions. In this study, we used more than thirty years of ecosystem-atmosphere water and carbon exchange at the Harvard Forest to understand the impact of precipitation extremes during the past decade on ecosystem water and carbon fluxes and the strength of land-atmosphere coupling. We found that in this mesic temperate forest, well-drained post-glacial soils rapidly drain surplus moisture from large rain events, while the remaining moisture necessary to preserve local humidity is quickly lost to evapotranspiration unless frequently replenished by rainfall. This region has also experienced two hot summer droughts during the past decade, causing further hydrological stress with carbon cycle implications. Furthermore, meteorological conditions in the nongrowing season have particularly shifted to warmer, drier conditions that set the stage for more frequent summer soil moisture deficits. In response to this past decade of hydrological extremes, we have observed a dampening of canopy light response curves, indicating lower rates of carbon uptake during the growing season and a parallel decline in ecosystem respiration as soils dry. More frequent dry conditions during key phenological windows, the intense delivery of rainfall during a shorter temporal window in the growing season, and rising summer temperatures and lower humidity have combined to decrease the ecosystem carbon uptake by photosynthesis and created large interannual variation in the strength of the net carbon sink at Harvard Forest during the past decade compared to the prior two decades of this study.more » « lessFree, publicly-accessible full text available December 9, 2025
-
Abstract Dry deposition could partially explain the observed response in ambient ozone to extreme hot and dry episodes. We examine the response of ozone deposition to heat and dry anomalies using three long‐term co‐located ecosystem‐scale carbon dioxide, water vapor and ozone flux measurement records. We find that, as expected, canopy stomatal conductance generally decreases during days with dry air or soil. However, during hot days, concurrent increases in non‐stomatal conductance are inferred at all three sites, which may be related to several temperature‐sensitive processes not represented in the current generation of big‐leaf models. This may offset the reduction in stomatal conductance, leading to smaller net reduction, or even net increase, in total deposition velocity. We find the response of deposition velocity to soil dryness may be related to its impact on photosynthetic activity, though considerable variability exists. Our findings emphasize the need for better understanding and representation of non‐stomatal ozone deposition.more » « less
-
Abstract Spatiotemporal variability in ozone dry deposition is often overlooked despite its implications for interpreting and modeling tropospheric ozone concentrations accurately. Understanding the influences of stomatal versus nonstomatal deposition processes on ozone deposition velocity is important for attributing observed changes in the ozone depositional sink and associated damage to ecosystems. Here, we aim to identify the stomatal versus nonstomatal deposition processes driving observed variability in ozone deposition velocity over the northeastern United States during June–September. We use ozone eddy covariance measurements from Harvard Forest in Massachusetts, which span a decade, and from Kane Experimental Forest in Pennsylvania and Sand Flats State Forest in New York, which span one growing season each, along with observation‐driven modeling. Using a cumulative precipitation indicator of soil wetness, we infer that high soil uptake during dry years and low soil uptake during wet years may contribute to the twofold interannual variability in ozone deposition velocity at Harvard Forest. We link stomatal deposition and humidity to variability in ozone deposition velocity on daily timescales. The humidity dependence may reflect higher uptake by leaf cuticles under humid conditions, noted in previous work. Previous work also suggests that uptake by leaf cuticles may be enhanced after rain, but we find that increases in ozone deposition velocity on rainy days are instead mostly associated with increases in stomatal conductance. Our analysis highlights a need for constraints on subseasonal variability in ozone dry deposition to soil and fast in‐canopy chemistry during ecosystem stress.more » « less
-
Abstract The loss of ozone to terrestrial and aquatic systems, known as dry deposition, is a highly uncertain process governed by turbulent transport, interfacial chemistry, and plant physiology. We demonstrate the value of using Deep Neural Networks (DNN) in predicting ozone dry deposition velocities. We find that a feedforward DNN trained on observations from a coniferous forest site (Hyytiälä, Finland) can predict hourly ozone dry deposition velocities at a mixed forest site (Harvard Forest, Massachusetts) more accurately than modern theoretical models, with a reduction in the normalized mean bias (0.05 versus ~0.1). The same DNN model, when driven by assimilated meteorology at 2° × 2.5° spatial resolution, outperforms the Wesely scheme as implemented in the GEOS‐Chem model. With more available training data from other climate and ecological zones, this methodology could yield a generalizable DNN suitable for global models.more » « less
An official website of the United States government
